

CS 137

Functions, Modules,
and Compiling
Fall 2025

Victoria Sakhnini

P a g e 1 | 19

Table of Contents

Working with Functions .. 2

Scope of variables ... 4

Boolean variables .. 5

Function declarations.. 6

assert ... 7

Working with Modules and Compiling ... 8

More about the C compilation process .. 10

More on Macros: .. 11

Additional Examples .. 12

Extra practice problems .. 15

P a g e 2 | 19

Working with Functions

We've already seen functions; int main(void) is a function!

Syntax:

 return-type fun_name(parameter(s)) {function body / statements}

A function is a group of statements that together perform a task. Every C program has at least one function, which is
main().

The return-type must be specified in C99, and later. It is void if the function does not return anything.

fun_name follows the same rules as variable names.

parameter(s) (if exist) must have their type declared per variable/parameter, e.g. int fun(int a, int b)
(int fun(int a, b) is incorrect)

The parameters are local variables used only inside the function body. We will learn more about the scope of a variable
in a bit.

return (if it exists) ends the function and returns the value after it. Otherwise, when we reach the end of the function
(}), it returns to the caller.

For calling a function with no parameters, you use empty brackets: fun_name();

Basic example:

1. # include <stdio.h>
2. int max (int a, int b)
3. {
4. return a > b ? a : b;
5. }
6.
7. int main (void)
8. {
9. printf("%d", max (5 ,10));
10. return 0;
11. }

Steps:

• The execution always starts with the main function.
• To execute printf in line 9, max(5, 10) is called (5 and 10 are called the arguments), we have two arguments because

the function max was defined with two parameters a and b of type int.
• When the function max is called, the value 5 is assigned to a, and the value 10 is assigned to b.
• Then, the function body is executed. since a > b is false (5>10 is false) then the returned value is 10 (the value of b).
• This value (10) is returned to the same place where the function was called; thus, printf in line 9 will output 10,
• then the main function returns 0, which ends the program.

This function call is by value, which means a copy of the arguments' values is assigned to the parameters. (We will
understand what this means and what other options are available in the future.)

P a g e 3 | 19

For another example, let us consider the following program and the output:

1. #include <stdio.h>
2.
3. void swap(int x, int y)
4. {
5. printf("In swap:\n");
6. printf("x=%d, y=%d\n", x, y);
7. int temp;
8. temp = x;
9. x = y;
10. y = temp;
11. printf("x=%d, y=%d\n", x, y);
12. printf("bye bye swap\n");
13. }
14. int main(void)
15. {
16. int x = 100;
17. int y = 200;
18. printf("In main before calling swap:\n");
19. printf("x=%d, y=%d\n", x, y);
20. // calling swap
21. swap(x, y);
22. // returning from swap
23. printf("In main after calling swap:\n");
24. printf("x=%d, y=%d\n", x, y);
25.
26. return (0);
27. }

 Note that the variables x and y in the main are not the same as the variables x and y in the swap; they have
the same names, but each has its own space in memory. The x and y defined in the main can be accessed only in the
main body. The x and y defined in swap can be accessed only in swap body

Trace table:

x (in main) y (in main) x (in swap) y (in swap) temp (in swap) output
100
 200
 In main before calling swap:
 x=100, y=200
 100
 200
 In swap:
 x=100, y=200
 100
 200
 100
 x=200, y=100
 bye bye swap1
 In main after calling swap:
 x=100, y=200

1 This is the last statement in swap, after we return to main we can not access x and y in swap anymore.

P a g e 4 | 19

Scope of variables

The variables inside the function swap are what we call local variables. The values from main are copied into the local
variables in swap function. Changing the local variables inside swap does not affect the variables in main (Also,
returning a local variable returns a copy of the value, which we will see examples of later).

A scope in programming is the section of the program where a defined variable exists; beyond that section, it can not be
accessed.

Example1:

Example2:

P a g e 5 | 19

Boolean variables

One more quirk about C is that there are no boolean variables. In C99 and later, a library <stdbool.h> gives you
boolean variables. It turns out that these bool variables are secretly unsigned integers in disguise (so even with this,
they aren't Boolean variables!), and these take up a full byte like a char. These types can only take 0 and 1 as values
(all non-zero values are just 1). You can also use the words true and false with this library.

Example:

1. #include <stdbool.h>
2. #include <stdio.h>
3.
4. bool isPrime(int n)
5. {
6. int div = 2;
7. if (n <= 1)
8. return false;
9. // The following print is for tracing
10. // variables to understand the process
11. printf("n=%d, div=%d\n", n, div);
12. while (div * div <= n)
13. {
14. if (n % div == 0)
15. return false;
16. div++;
17. // The following print is for tracing
18. // variables to understand the process
19. printf("n=%d, div=%d\n", n, div);
20. }
21. return true;
22. }
23.
24. int main(void)
25. {
26. int n;
27. printf("Enter a positive integer: ");
28. scanf("%d", &n);
29. bool is_prime = isPrime(n);
30. printf("is_prime=%d\n", is_prime);
31. if (is_prime)
32. printf("Prime\n");
33. else
34. printf("Not Prime\n");
35. return 0;
36. }
37.

 if (is_prime == true) is equivalent to if (is_prime)

I've added printf statements to track variables to help you understand the process and the changes in values for each

variable. You can find a complete trace for 121 and 13 here i

Using this approach helps understand code and debugging.

P a g e 6 | 19

Function declarations

In our example, we defined the function before using it. Strictly speaking, C doesn't force us to do this. We can include a
function declaration and a promise to C that we'll eventually define this function with this given return type. The
declaration is the first line of the function but ends with a semicolon. The declaration may not include the parameters,
though it is advised to do so.

The previous example can also be written in the following way:

1. #include <stdbool.h>
2. #include <stdio.h>
3.
4. bool isPrime(int n); // Function Declaration
5.
6. int main(void)
7. {
8. int n;
9. printf("Enter a positive integer: ");
10. scanf("%d", &n);
11. bool is_prime = isPrime(n);
12. printf("is_prime=%d\n", is_prime);
13. if (is_prime)
14. printf("Prime\n");
15. else
16. printf("Not Prime\n");
17. return 0;
18. }
19.
20. bool isPrime(int n)
21. {
22. int div = 2;
23. if (n <= 1)
24. return false;
25. // The following print is for tracing
26. // variables to understand the process
27. printf("n=%d, div=%d\n", n, div);
28. while (div * div <= n)
29. {
30. if (n % div == 0)
31. return false;
32. div++;
33. // The following print is for tracing
34. // variables to understand the process
35. printf("n=%d, div=%d\n", n, div);
36. }
37. return true;
38. }

Some programmers prefer to declare the functions before main and write the implementation after main.

Either way, the function must be declared or defined before another function calls it.

P a g e 7 | 19

assert

Let us look at the following problem.

The Gregorian calendar replaced the Julian calendar in most of Europe in 1582. North America (i.e., England and its
colonies) adopted this calendar in September 1752. A leap year contains an extra day that occurs every four years, not
multiples of 100 unless they are also multiples of 400.
Examples: 2016, 2000, 1804 were all leap years.
Non-Examples: 2017, 1900, 1950 were not leap years.
Write a function is_leap_year that returns true if a given year was a leap year and false otherwise.

Solution:

1. #include <stdio.h>
2. #include <stdbool.h>
3.
4. bool is_leap_year(int year)
5. {
6. if ((((year % 4) == 0) && ((year % 100) != 0)) || (year % 400) == 0)
7. return true;
8. else
9. return false;
10. }
11.

This works well but gives us some problems if the year were to be negative. Since we are in North America, we want the
year to be at least 1752. We can accomplish this by using assert statements. First, add #include <assert.h> to the
beginning then include assert(year > 1752);

1. #include <stdio.h>
2. #include <stdbool.h>
3. #include <assert.h>
4.
5. bool is_leap_year(int year)
6. {
7. assert(year > 1752);
8. if ((((year % 4) == 0) && ((year % 100) != 0)) || (year % 400) == 0)
9. return true;
10. else
11. return false;
12. }
13.
14. int main(void)
15. {
16. int year;
17. printf("Enter a year: ");
18. scanf("%d", &year);
19. if (is_leap_year(year))
20. printf("It is a leap year\n");
21. else
22. printf("It is not a leap year\n");
23. }
24.

P a g e 8 | 19

In general, assert(expr); If expr is true, this line does nothing. Otherwise, it terminates the program with a
filename, line number, function, and expression message. This is great for debugging. It's also great to leave it in (so long
as expr is not computationally expensive). It helps to remember assumptions, causes the program to fail "loudly" vs
"quietly", and advises other programmers if the code undergoes modifications. Finally, it is suitable for regression
testing, checking that changes haven't broken anything in another part of the code.

Working with Modules and Compiling

In the "real world", programs are coded by many programmers. It is often inefficient for them to all work on the same
file, and it can get very confusing when you have millions of lines of code. Therefore, we want to modularize the design
and reduce compile time.

Modular programming divides the program into sub-programs, each serving a specific goal. Breaking the large program
into small problems increases the program's readability and maintainability and the reusability of the small sub-
programs.

Each module has a well-defined interface that specifies what services it provides, as well as an implementation part that
hides the code and other details from the user (by providing an executable file to the user so they can't read the actual
implementation but can use the provided functions listed in the interface with documentation).

An additional advantage is that changing the implementation without changing the interface does not require the user
to change the main program that uses/includes those modules. Also, it is much easier to debug a program this way.

P a g e 9 | 19

This is the interface file (.h) that includes
definitions of new data types (will see
examples later) and function declarations.

This is the implementation file (.c with the
same name as the interface file) which
includes the function implementations
which were declared in the interface file. It
might include helper functions needed for
implementation as well (those are not
declared in the interface file as users are not
supposed to call them directly).

Note how we compiled both files; the
implementation file and the program file to
link them together.

P a g e 10 | 19

More about the C compilation process

To compile a C program, we use the gcc compiler in Linux, which stands for Gnu Compiler Collection.

It creates an executable called a.out (unless you request a different name). Now, I will review the details of what
happens when you invoke the C compiler gcc.

When you invoke gcc, a series of steps are performed as indicated in the chart above!

The processor
 It removes comments from the source code and interprets preprocessor directives (given by statements that begin with
#, such as #include).

Compiling and assembling
The compiler translates the C code into assembly language (a machine-level code containing instructions that
manipulate the memory and processor directly in a layer beneath the operating system). You do not usually see this
level of compilation. Instead, you see what is known as the object code. The compiler creates the assembly code and
converts the machine-level instructions into binary code. You can create object code from a C source with
$ gcc -c prog.c
This creates a binary file called prog.o that cannot be viewed with a text viewer.

P a g e 11 | 19

Linking
The linker processes the main function and any possible input arguments you might use, links your program with other
programs that contain functions that your program uses (libraries), and links other pre-compiled object files together to
create an executable file.

More on Macros:
We've already seen three macros, namely #include, #ifndef and #define. In fact, we can use the #define to
define constants in our code.

Syntax: #define identifier replacement

Notice that you don't need an equal sign or a semicolon; this is a straight replacement. This can be useful for constants
in your code.

Example:

Preprocessing turns the left into the right with regard to the constant. (same should happen to #include, but the
result looks messy, so we will not show it here). BTW, you can run gcc on the program file with the -E flag to see the
preprocessor output.

3.1415 is a float value (non-integer); we will learn about this type later.

P a g e 12 | 19

Additional Examples

/*
 * Computes the number of combinations of n items taken r at a time
 */

#include <stdio.h>
int factorial(int n);

/*
 * Demonstrates multiple calls from the main function passing different
 * actual arguments to a user-defined function.
 */
int main(void)
{
 int n, r, c;

 printf("Enter total number of components> ");
 scanf("%d", &n);
 printf("Enter number of components selected> ");
 scanf("%d", &r);
 if (r <= n)
 {
 c = factorial(n) / (factorial(r) * factorial(n - r));
 printf("The number of combinations is %d\n", c);
 }
 else
 {
 printf("Components selected cannot exceed total number\n");
 }
 return (0);
}

/*
 * Computes n! for n greater than or equal to zero
 */
int factorial(int n)
{
 int i, /* local variables */
 product = 1;

 /* Computes the product n x (n-1) x (n-2) x ... x 2 x 1 */
 for (i = n; i > 1; --i)
 {
 product *= i;
 }

 /* Returns function result */
 return (product);
}

P a g e 13 | 19

/* Finds and displays the smallest divisor (other than 1) of the integer n.
 * Displays that n is a prime number if no divisor smaller than n is found. */

#include <stdio.h>
#include <math.h>

#define NMAX 1000

int even(int num)
{
 int ans;
 ans = ((num % 2) == 0);
 return (ans);
}

int find_div(int n)
{
 int trial, /* current candidate for smallest divisor of n */
 divisor; /* smallest divisor of n; zero means divisor not yet found */

 /* Chooses initialization of divisor and trial depending on whether n is even or odd. */
 if (even(n))
 divisor = 2;
 else
 {
 divisor = 0;
 trial = 3;
 }

 /* Tests each odd integer as a divisor of n until a divisor is found this way or until
trial is so large that it is clear that n is the smallest divisor other than 1. */
 while (divisor == 0)
 {
 if (trial > sqrt(n))
 divisor = n;
 else if ((n % trial) == 0)
 divisor = trial;
 else
 trial += 2;
 }

 /* Returns problem output to calling module. */
 return (divisor);
}

int main(void)
{
 int n, /* number to check to see if it is prime */
 min_div; /* minimum divisor (greater than 1) of n */

 /* Gets a number to test. */
 printf("Enter a number between 2 and 1000 that you think is a prime number> ");
 scanf("%d", &n);

P a g e 14 | 19

 /* Checks that the number is in the range 2...NMAX */
 if (n < 2)
 printf("Error: number too small. The smallest prime is 2.\n");
 else if (n <= NMAX)
 {
 /* Finds the smallest divisor (> 1) of n */
 min_div = find_div(n);
 /* Displays the smallest divisor or a message that n is prime. */
 if (min_div == n)
 printf("%d is a prime number.\n", n);
 else
 printf("%d is the smallest divisor of %d.\n", min_div, n);
 }
 else
 printf("Error: largest number accepted is %d.\n", NMAX);
 return (0);
}

P a g e 15 | 19

Extra practice problems

[Some solutions can be found at the end of the file; however, try to solve it before reviewing my suggested solution.
This is also true for all future chapters]

1) Complete the following programii to be able to run it successfully. You may not include any additional interfaces.

1. #include <stdio.h>
2. #include <assert.h>
3.
4. int max3(int a, int b, int c);
5.
6. int min3(int a, int b, int c);
7.
8. // middle assumes that the three numbers are different
9. int middle(int a, int b, int c);
10.
11. int main(void)
12. {
13.
14. assert(max3(9, 8, 17) == min3(234, 17, 89));
15. assert(max3(9, 9, 9) == min3(9, 9, 9));
16. assert(max3(19, 9, 19) == min3(99, 19, 19));
17.
18. // middle assumes that the three numbers are different
19. assert(middle(14, 33, 10) == 14);
20. assert(middle(114, 33, 10) == 33);
21.
22. printf("Good job\n");
23.
24. return 0;
25. }

P a g e 16 | 19

2) Consider the following interface file funumbers.h (You may not change this file at all)

Implement funumbers.c in order to be able to run the following program successfully:

1. #ifndef FUNUMBERS_H // Prevents multiple inclusion
2. #define FUNUMBERS_H
3. #include <stdbool.h>
4.
5. // Pre: num is a valid positive integer
6. // the function returns true if num and its revered digits are equivalent
7. // examples: 12321 555 7
8. // non-examples: 345 15
9. bool is_palindrome(int num);
10.
11. // the function returns the biggest prime number that is smaller than num
12. // num > 2
13. int big_prime(int num);
14.
15. #endif

1. #include <stdio.h>
2. #include <assert.h>
3. #include "funumbers.h"
4.
5. int main(void)
6. {
7.
8. assert(is_palindrome(8));
9. assert(is_palindrome(111));
10. assert(is_palindrome(145541));
11. assert(! is_palindrome(14321));
12.
13. assert(big_prime(15) == 13);
14. assert(big_prime(498) == 491);
15. assert(big_prime(3) == 2);
16.
17. printf("Good job\n");
18. return 0;
19. }
20.

P a g e 17 | 19

Tracing:

i

P a g e 18 | 19

P a g e 19 | 19

Solutions:

ii

	Table of Contents
	Working with Functions
	Scope of variables
	Boolean variables
	Function declarations
	assert
	Working with Modules and Compiling
	More about the C compilation process
	The processor
	Compiling and assembling
	Linking

	More on Macros:

	Additional Examples
	Extra practice problems

